Supplementary material for a Unified Non-Negative Matrix Factorization

Framework for Semi Supervised Learning on Graphs

Anasua Mitra*  Priyesh Vijayan®

Abstract

We propose a Semi-Supervised Learning (SSL) framework,
USS-NMF, that allows for explicitly encoding different
necessary priors to learn efficient node representations in
a graph. USS-NMF specializes in encoding the important
yet largely ignored necessary prior for SSL, the cluster
assumption. The cluster assumption of SSL requires the
existence of well-separated dense regions in a low-dimensional
manifold with high label smoothness within each region. USS-
NMF encodes this assumption in the form of a proposed
semi-supervised cluster invariance constraint, which is a
We show
that explicitly enforcing this constraint enables learning

group-level smoothness constraint on nodes.

meaningful node representations from both qualitative
Specifically, USS-
NMF achieves superior performance on semi-supervised

(visual) and quantitative standpoints.

node classification and clustering tasks across thirteen
datasets from over eight baselines. Also, the learned
node embeddings from USS-NMF yield high-quality (well-
separated homophilous) clusters in t-SNE visualizations.

1 Background on Graph Embedding

Graph Embedding techniques have become popular for
learning representations for different components of the
graph like nodes, edges, sub-graphs, and the entire graph.
Graph embedding models encode different intrinsic and
extrinsic properties of the network as continuous low
dimensional vectors. Network representation learning
has been realized by a variety of paradigms such as
factorization models, graph kernels, skip-gram based
models, deep learning models, generative models and
hybrid paradigms, etc [2].

The skip-gram based seminal work, Deepwalk [4]
and it’s variants use k-step random walks to define a
k-th order neighborhood. Node2Vec [3] is one exception
that uses an informed random walk sampling on nodes

" *Department of CSE, Indian Institute of Technology Guwahati
tDepartment of CS, McGill University & MILA
*Work done during his MS program at IIT Madras
$Department of CSE, Ohio State University
Y Department of Biomedical Informatics, Ohio State University

| Department of CSE, Indian Institute of Technology Madras
**Robert Bosch Centre for Data sciences and Al, IIT Madras

Srinivasan Parthasarathy®¥

23

Balaraman Ravindran'

based on pre-defined parameters that trades-off between
breadth-wise and depth-wise exploration. On the other
hand, factorization models have been widely used to
encode different network contexts and couple it with
different constraints, e.g., Locally Linear Embeddings,
Laplacian Eigenmaps, GraphFactorization, ISOMAP,
GraRep, HOPE, LINE.

Recently, a few works learn clusterable node
embeddings that preserve network community
information. MNMF is an NMF based model that learns
node embedding by factorizing the proximity matrix
and predicts community assignments for these nodes
from the embeddings. The community assignments are
learned jointly, maximizing the modularity of the graph.
ComeE [1], and GEMSEC [5] are two other community
preserving models that learn node embeddings by
skip-gram model. GEMSEC is a k-means based adaption
for learning node embeddings that jointly learn clusters
centers. GEMSEC learns cluster embeddings along with
node embeddings and minimizes the distance between
the node’s embedding and the nearest cluster mean.
ComE, along with minimizing the context prediction
loss of skip-gram, also maximizes the log-likelihood of
generating node embeddings from multiple GMMs.

There are numerous works on learning unsupervised
node embeddings for attributed graphs. However,
there are only fewer works that jointly learn node
embedding with side information such as attribute
and group information.  Works that learn semi-
supervised node embeddings with label information
is further scarce. These Semi-supervised models can
learn discriminative node embeddings that can provide
superior node classification results. [6]’s MaxMargin
Deep Walk (MMDW), jointly solves the factorization
of the PPMI matrix of a k-step random walk and the
hinge loss for label prediction. Planetoid |7] is another
extension of DeepWalk (DW) that also optimizes a cross-
entropy loss for label prediction. Planetoid additionally
enforces nodes to predict other nodes with similar labels.
Planetoid also has a variant for attributed graphs.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



2 Implelementation Details

The details of the hyper-parameters for our model and
the baselines are provided below. The hyper-parameter
search space for different components in all the models
experimented here is tabulated in Table: [T}

Lagrange Multipliers’ Range We first provide
the details of HP search for the Lagrange multipliers
followed by model specific details. For all the

for all other comparable methods.

USS-NMF: We used the same range of hyper-
parameters as stated in Table: [2]last column, but instead
of searching the optimal combination in the entire range
(which is cumbersome), we did partial range search in
steps. Step by step, 1) network + label information
weights, 2) cluster matrix factorization + cluster learning
weights + orthogonality constraint, 3) label smoothing

matrix factorization baselines, we vary the hyper- T L2 regularization weights, and finally, 4) the clusters

parameter values (the respective weightage terms
for each component in the objective function) in
[0.1,0.5,1.0,5.0,10.0] except for Wikipedia. In
Wikipedia, we found that the network information
is far more important than other supervision
knowledge. So we varied network co-efficient in the
range of [10000,1000,100,10] with other weights in
[0.001,0.01,0.1,1.0]. We fixed embedding dimension
as 128 for all datasets except Blogcatalog, for which the
dimension is set as 4096.

DeepWalk & MFDW: For original random-walk
based DeepWalk we set the window size to 5. We also
have MFDW aka NMF:S in Eqn: 3.2 - the objective
function for Matrix Factorized DeepWalk, as we build
our model incrementally on top of it.

Max-Margin DeepWalk (MMDW): In this
paper [6], a max-margin loss is incorporated in the
objective function of MFDW to learn discriminative
representations of vertices. It has one important hyper-
parameter alpha-bias (n) that induces max-margin loss
based bias into the random walk.

NMF:S+Y: We build a variant of MMDW which
also incorporates supervised information into node
embeddings by jointly optimizing Eqn: 3.2 & 3.3. It
works competitively as compared to MMDW.

Planetoid & MF-Planetoid: Planetoid 7] learns
an embedding space for nodes by jointly enforcing label
and neighborhood similarity. It uses random walks
to enforce structural similarity. We derive a matrix-
factorized version of Planetoid as an alternative baseline.
It enforces matrix F, i.e, train-label similarity on the
embedding space U, unlike ours as in Eqn: 3.6 which
enforces label similarity on the cluster space.

(2.1) OmP-plan = OINMF : S+Y)+Tr{UA(EYUT}

MNMF & MNMF+Y: We build one semi-
supervised variant of MNMF, viz. MNMF+Y by jointly
optimizing its objective function along with Eqn: 3.3.
Unlike the original MNMF that factorizes a combination
of first-order and cosine similarity based second-order
node proximity to learn node representations, here, for
the sake of fair comparison, we stick to a combination of
first-order and second-order transition probability-based
proximity matrix as S, following MMDW [6] as we did

k for each dataset was varied with an increment of 2 in
the upper range and with a decrement of 1 in the lower
range from its actual number of labels ¢ (inclusive).

In the first step, we fixed all other variable values
as 1.0, k = ¢ and in later steps, we set already searched
parameter values to optimal values found in previous
steps, we vary the other variables under consideration. In
Table: [2l we have given an effecctive value range for each
of the coeflicients, applicable for varying sized datasets.
We make the following points based on observation,

Labels and label-similarity based clusters gave
complementary information to support each other
for enhanced prediction (evident from their weight
combinations in results). For small graphs, network
information was more useful than other information.
Also, small graphs tended to be more sensitive to weight
combinations with easily imposed cluster orthogonality
constraint (see the effective range). But for large
graphs, USS-NMF needed more weights to ensure
orthogonal clusters being learned. Higher cluster
learning weights (in effective range) indicate that indeed
cluster information mattered. We found optimal results
for clusters same as ground truth labels, very different
from labels, multiple optimal clusters - which indicate
that a variety of semantically meaningful clusters have
been learnt. In effective search, for simplicity, we set
clusters as the number of labels, which gave decent
results. Except for Pubmed and Wikipedia, we do not
witness any fluctuation in L2 regularization weights.

With these observations at hand, we narrowed down
the effective hyper-parameter search space such that
network has weights (>=1 & <=10), labels & clusters
don’t overpower network weights, stable values for
regularization & orthogonality weights and the number of
ground truth labels as clusters. This ranges’ effectiveness
can be seen immediately from Table: [0] where we have
used the same effective range to derive results for USS-
NMF, that still significantly outperforms other semi-
supervised methods (full hyper-parameter search). Thus,
we can conclude that the effective hyper-parameter space
is not really huge for USS-NMF and is comparable to
other existing methods (see the number of experiments
in the last row of Tables: [2 & [1] for reference).

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



Matrix Factorization based methods

Random Walk/ Other methods

Co-cfficients NMF:S ‘ NMF:$ 1Y ‘ MMDW MNMF MNMF Y ‘ MF-Plan Tif(f{,;{ ‘ Co-cfficients DeepWalk | ComE Gemsec
[0.1, 0.3, 0.5,
Network 0.1-10.0 | 0.1-100 | 0.1-10.0 0.1-10.0 0.1-10.0 0.1-10.0 | 0.1-10.0 | p [1.0] NA 0.7, 1.0, 3.0,
5.0, 7.0, 10.0]
Max-margin loss
Label NA 0.1-10.0 | based gradient: | NA 0.1-10.0 0.1-10.0 | 0.1-10.0 | q NA Network: 0.1-10.0 Same as p
e"|-1, -2, -3, -4, 5]
Cluster Factorization ~ NA NA NA 0.1-10.0 0.1-10.0 NA NA Walk-Length 80 NA 80
Cluster Learning NA NA NA 0.1-10.0 0.1-10.0 NA NA No of Walks 10, 80 NA 40, 80
A . . . ) . Initial LR: [0.01, 0.1]
Cluster Orthogonality NA NA NA [le +(0,4,8)] [le+(0,4,8)] | NA NA Learning Rate NA [0.001, 0025, 0.625, 0.1] | \ie b 5 o boow, o.001)
Graph Laplacian Reg  NA NA NA NA NA 0.1-10.0 | 0.1-10.0 | Community Learning NA 0.1-10.0 0.01, 0.1, 1.0]
L2 Regularization 0.1-100 | 0.1-100 | 0.1-10.0 0.1-10.0 0.1-10.0 0.1-10.0 | 0.1-10.0 | L2 Regularization NA NA 0.1-10.0
#Clusters NA NA NA #Labels(-1, +2) | #Labels(-1, +2) | NA NA #Clusters NA #Labels(-1, +2) #Labels(-1, 1+2)
#Experiments 25 125 125 110 130 130 130 #Experiments 2 125 204

Table 1: Hyper-parameter range search for Baselines

Co-efficients USS-NMF (Effective range) USS-NMF (Entire range)

Dataset (small=<1k, large>1k [V[) Small Large All Datasets

Network 1.5 1,5, 10 0.1-10 / 0.1, 0.5, 1.0, 5.0, 10.0]
Label 01,1 0.1,0.5, 1 0.1-10

Cluster Factorization 01,1 0.1,0.5, 1 0.1-10

Cluster Learning 10 10 0.1-10

Cluster Orthogonality Te + (0, 4) le +8 le + (0,4, 8)

Graph Laplacian Regularization 05,1 05, 1 0.1-10

L2 Regularization 1 1 0.1-10

#Clusters #Labels #Labels #Labels(-1, 12)

#Experiments 32 (Full scarch) 54 (Full scarch)
We selected 25 values for k as #Labels(-1, +2), i.e., increasing 2 in
the upper range and decreasing 1 in the lower range from a dataset’s
actual no of labels ¢ (inclusive). We also report generic range which
effectively works for most of the cases. See results in Table:

150 (Partial seach)

Table 2: Hyper-parameter search space for USS-NMF

3 Ablation Study

Here, we drill down the components of USS-NMF to
analyze the importance of utilizing information about
labels and clusters.

3.1 Importance of Label Information Since the
smoothening on the cluster space is based on the label
similarity graph, it is necessary to verify - 1) whether
we need to factorize the label matrix and 2) whether we
should smooth the predicted label space locally beside
this. We report results for this study in Table: [3] where
we subtract the before-mentioned two components from
the original model USS-NMF. The model in Column: 3
does not have the label smoothing term and the model in
Column: 4 does not have the label matrix factorization
as well as the label smoothing term. Note that we
can not smooth on the label space based on the local
neighborhood structure without predicting the labels.
Label smoothing term provides an improvement of
up to 3.74 points in Wiki, 2.13 points in Texas, up to
1.5 points for Cora & Wisconsin, and no improvement
in Washington & Cornell. On seven datasets, it
offers an improvement of 1% — 4%, and on three of
the other datasets, it provides an increase between
0.3% — 1.0%. Thus, the label smoothing term is quite
helpful. Moreover, it can be seen from Column: 4,
that removing the label matrix factorization, Y has a
significant impact on USS-NMF. It results in an average

drop in the performance of 2.24% with label matrix
factorization solely contributing an average drop of
1.39%. The performance drop is a maximum of 7.08% on
Citeseer, followed by 6.6% in Cora. On eleven datasets,
it offers an improvement of 2% — 9%, and on rest two
of the datasets, it provides an increment in performance
between 1.0% — 1.5%. Whereas, the average reduction in
performance when we remove the label smoothing term is
approximately 0.85%(stdev : 0.8%). This indicates that
it is necessary to have both the terms in our objective.

USS-NMF | - LS(S,Y) | - (Y + LS(S, Y))
Cora 87.306 85.883 80.738
Citeseer 70.187 69.825 63.109
Wiki 70.906 67.168 65.339
Washington 67.826 67.826 65.217
Wisconsin 56.391 54.887 51.281
Texas 63.830 61.703 59.574
Cornell 56.122 56.122 52.020
PPI 23.433 23.130 22.346
Wikipedia 57.894 56.254 55.578
Pubmed 84.009 83.981 78.945
Co-Author 37.858 36.972 36.198
Blogcatalog 41.254 39.736 38.135
Microsoft 49.706 48.669 47.153

USS-NMF: Proposed method, LS(S, Y): Local smoothing on
the predicted label space, Y: Inclusion of label information
through factorization. In 3' & 4" columns the minus sign

indicates the respective terms are removed from the
objective of USS-NMF.

Table 3: Importance of Label Information.

3.2 Importance of Cluster Information Here, we
try to understand the importance of the proposed cluster
smoothing term by removing the cluster smoothing
term first and then additionally removing the cluster
factorization term too. This corresponds to Column:
3 and Column: 4 in Table: [§] respectively. Removing
the cluster smoothing term results in an average drop
of 1.82% across datasets whereas completely removing

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



USS-NMF | - LS(E, H) | - (H + LS(E, H))
Cora 87.306 86.159 86.109
Citeseer 70.187 69.101 68.697
Wiki 70.906 70.407 69.825
Washington 67.826 63.478 62.609
Wisconsin 56.391 52.632 52.632
Texas 63.830 62.766 61.702
Cornell 56.122 52.041 52.041
PPI 23.433 23.281 23.191
Wikipedia 57.894 56.814 56.637
Pubmed 84.009 83.540 83.479
Co-Author 37.858 36.684 36.200
Blogcatalog 41.254 38.505 38.111
Microsoft 49.706 47.676 47.008

LS(E, H): Label similarity based smoothing on the predicted
cluster space, H: Inclusion of predicted cluster information
through factorization. In 3™ & 4*" columns the minus sign

indicates the respective terms are removed from the
objective of USS-NMF.

Table 5: Importance of Cluster Information.

all cluster related components results in an average
drop of 2.2% on performance. Cluster smoothing term
provides an additional improvement between 2% — 4%
on five datasets and 1% — 2% improvement on other
five datasets. By removing the cluster assignment/
factorization term, we observe a drop in performance by
a maximum of 5.22% on Washington, 4.08% on Cornell &
3.76% on Wisconsin, followed by 3.14% on Blogcatalog,
between 1.0% —2.5% for seven other datasets and < 0.5%
for the rest. Note that random cluster assignments
with unsupervised clustering objective (ComE, MNMF,
GEMSEC) did reasonably well but only a few times
outperformed the second-best model, MNMF+Y in
Table: 3. USS-NMF outperforming all - demonstrates
the usefulness of encoding label similarity invariant
representations on cluster space. In the next section, we
will further clearly see the benefits of combining label
and cluster smoothing terms.

4 Study on Laplacian smoothing variants

In this section, we analyze and compare different
Laplacian smoothing variants in Table: [7} The models in
the first four columns enforces Laplacian smoothing with
the proximity graph, S and the next four models enforces
Laplacian smoothing with the label similarity graph, E.
All the models in this table additionally factorize label
matrix, Y. The model in the last column is USS-NMF.
USS-NMF is the winner across the board on all datasets
with Rank 1 and Penalty 0.

Model in Column: 3, NMF : LS(S,Y) + Y, is the
standard Label Propagation implemented in NMF style.
It does not additionally factorize the proximity matrix,

S and thus does not have any network embeddings. This
is the second-worst performing model with the highest
rank and highest penalty. From this model, it is evident
that we need to learn from the network as well.

Model in Column: 2, NMF : LS(S,U) + Y learns
embeddings such that connected nodes have closer
embeddings. It is similar in spirit to NMF : S+Y
which factorizes the proximity matrix directly. This
model has the lowest penalty.

Model in Column: 6, NMF : LS(E,U)+ S+Y
(NMF': Planetoid) has the same objective as Planetoid-
G but in NMF style. It enforces nodes with similar
labels to have similar embeddings. In a head on
comparison with NMF : LS(S,U) +Y (Column: 2), it
shows that enforcing smoothness from a global context
has remarkable improvement in Penalty scores and is
statistically better with p < 0.02.

Model in Column: 5, NMF : LS(S,Y) + S + Y, is
a powerful model which is second on 5/13 datasets. It
can be seen as an improvement of Label Propagation
where it additionally factorizes proximity S to learn node
embeddings that capture network structure. It clearly
beats the base NMF : LS(S,Y) 4+ Y in Column: 3.

Model in Column: 7, is an extension of NMF:
Planetoid (Column: 6) which includes label smoothing.
It can be seen that adding label smoothing provides an
improvement on all datasets up to 2.24 points.

Model in Column: 8 is USS-NMF without the label
smoothing term. Label smoothing term is crucial as it
gives an improvement upto 3.74 points in Column: 9
(USS-NMF). And, similarly semi-supervised clustering
with global context is also important as it provides an
improvement between 0.5 — 4.08 points over NMF :
LS(S,Y)+ S +Y (Column: 5) in most of the datasets
except Cora, PPI. Adding clustering components to label
smoothing term NMF : LS(S,Y) 4+ S +Y (Col: 5)
provides an avg improvement of 1.6 points in Col: 9.

5 SSL with balanced dataset:

Planetoid |7] was defined for multi-class classification
problem on balanced labeled set, i.e., the same number
of representative train instances for all labels (one
unrealistic setting for real-world data). We empirically
observed Planetoid performing poorly in comparison
to other baselines when the labeled set is randomly
drawn. Also, Planetoid is not directly extensible for
multi-label problems. Hence, we define a similar semi-
supervised NMF model, (NMF:Planetoid) or (MF-Plan)
with Planetoid’s semi-supervised learning objective i.e.,
explicitly enforcing embeddings of nodes of the same
label to be similar.

Here, we report results for models on the original
balanced train/val/test split given with Planetoid [7].

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



Laplacian Using Neighborhood Similarity Graph (S) : LS(S, *) Using Label Similarity Graph (E) : LS(E, *)
Invariant Space | Embedding: U* | Label: Y* | Cluster: H(U)* | Label: Y* Embedding: U* Cluster: H(U)*
+Y +Y +Y Y +S [ =Y S [+Y +S+IS(S, V) | +Y +S | +Y +S + LS(S, Y)

Cora 86.568 85.683 85.506 87.109 85.756 86.716 85.883 87.38
Citeseer 69.040 68.825 68.678 68.697 68.637 69.039 69.825 70.187
Wiki 69.410 69.742 66.885 69.825 67.249 69.493 67.168 70.906
Washington 60.000 55.652 66.957 66.957 66.957 65.652 67.826 67.826
Wisconsin 48.120 49.624 52.880 52.632 52.759 52.880 54.887 56.391
Texas 57.447 59.574 60.634 61.702 60.638 61.702 61.703 63.830
Cornell 52.041 53.061 52.041 52.041 53.061 54.082 56.122 56.122
PPI 22.346 22.648 23.087 23.191 22.497 22.886 23.130 23.433
Wikipedia 44.277 43.304 56.147 56.637 55.805 56.398 56.254 57.894
Pubmed 83.387 83.499 83.151 83.479 82.779 83.801 83.981 84.009
Co-Author 36.198 36.127 36.260 36.200 36.684 36.908 36.973 37.858
Blogcatalog 36.246 36.103 39.001 39.111 38.983 38.083 39.736 41.254
Microsoft 43.220 45.397 48.100 48.108 47.237 48.213 48.669 49.706
Rank 6.46 6.31 5.46 3.85 5.62 3.77 2.69 1
Penalty 4.5 4.43 2.11 1.62 2.13 1.61 1.13 0.000

Table 7: Semi-Supervised Learning Analysis | Micro-F1 Scores

| Datasets | Planetoid-G | MMDW | NMF:S+Y | MNMF+Y | MF-Plan | NMF:S+Y+LS(S,Y) | USS-NMF

Cora, 69.1 71.6 74.3 75.9
Citeseer | 49.3 60.9 62.6 61.6
Pubmed | 66.4 80.6 80.4 79.6

75.1 75.4 79.1
63.1 63.7 66.7
80.5 80.7 82.1

Planetoid-G versus all the competing Semi-Supervised models (SOTA Baselines & their variants)
for Planetoid paper’s train/test splits of graph data

Table 8: Node Classification Results | Balanced Sampling | Micro-F1 Scores

The non-attributed model of Planetoid, Planetoid-G,
performs poorly in comparison to the NMF models even
in this setup. Our results for Planetoid on running the
author’s code is very similar to what is reported in their
paper. However, we can see significant improvement in
the results for NMF:Planetoid. The improvement owing
to MF-Plan can be attributed to (i) exact computations
instead of sampling strategy followed in the original
paper, and (ii) non-negative embeddings. From Table:
it is evident that among all the competing methods
USS-NMF does significantly better. We find balanced
class distribution to be beneficial for our model as we
obtain extraordinary performance improvement on Cora,
Citeseer and Pubmed.

6 SSL with varying ratio of labeled data:

We also report node classification results for varying test-
train splits to study and understand how our method
does on various label sparsity cases in Table: [J]against all
the semi-supervised State-Of-The-Art (SOTA) methods
as baselines. The table is enough reflective of the fact
that USS-NMF does well in case of label sparsity too.
For varying splits of randomly sampled labeled data, it
consistently outperformed the other baselines. When
the labeled data is sparse, the cluster information acts
as complementary information to help to predict labels
for the unlabeled nodes.

Effects of varying number of clusters on Cora Effects of varying number of clusters on Citeseer

@ USSNIF @ NMFS+Y @ USSNIF @ NMFS+Y

AN e e e e

e T T T

Numt Numbe

Effects of varying number of clusters on Wisconsin Effects of varying number of ¢

ers on Wikipedia

© USSNIF @ NUFS+Y © USSNIF @ NMES+Y

[ Ao

Number of clusters Number of clusters

Figure 1: Varying Number of Clusters

7 USS-NMF’s sensitivity to number of clusters

We performed an extensive study on how the number
of clusters influences node classification performance
and whether there is any need for learning clusters at
all. For Cora, Citeseer and Wisconsin - three multi-class
datasets and Wikipedia - a multi-label dataset, we varied
the number of clusters as in Figure: [I] Blue solid lines
indicate the classification performance of our proposed
methods USS-NMF'. Corresponding Red solid horizontal
lines represent respective performances where all the

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



Dataset Cora Citeseer ‘Wiki

Train (%) 5 10 20 30 40 50 5 10 20 30 40 50 10 20 30 40 50
NMF:S+Y | 67.519  76.620 79.012  84.660  84.194  85.535 51.128  54.172  62.068  64.379  68.477  68.618 57.367  60.442  62.945 63.404  65.152
MMDW 67.403  75.101 80.093  82.942  82.889  83.838 | 47.283  54.509  58.544  63.362  66.265  68.911 56.655 58.120  62.270  63.391 67.007
MNMF+Y | 68.947 76.948 81.172  84.396  83.518  85.904 | 50.906  55.533  63.787  65.689  67.622  69.005 | 56.536  62.130  64.549  64.751  66.999
USS-NMF | 69.452 78.015 82.880 85.609 85.486 87.380 | 52.253 57.478 65.070 66.422 69.231 70.187 | 58.568 62.909 67.102 69.183 70.906

Table 9: Node Classification Results | Varying Train-Test Splits | Micro-F1 Scores

cluster related terms were set to 0 (8 =0,¢ =0,¢ =0),
i.e., learning no clusters (NMF:S+Y best scores).

As we can see, major portions of the curves are above
their respective dotted lines, indicating that learning
clusters help in guiding node representations. From
the plot, it is interesting to see that small dataset like
Wisconsin is more sensitive to changing the number of
clusters than larger datasets. For Wikipedia, a multi-
label dataset, we can clearly see the tendency of learning
overlapping clusters as the optimal clusters are lesser
than the ground-truth labels. Again, there are optimal
clusters very different from the ground truth labels
(Citeseer) and multiple numbers of optimal clusters (in
Cora, Citeseer, Wisconsin) which indicates that small
clusters of same class data having low density separation
among them (Refer to t-SNE plots) are being learned.

8 Convergence Analysis for USS-NMF

We study and validate the convergence property of USS-
NMF in Figure: [2] where the objective function values
are plotted against iteration numbers. The objective
function values are non increasing with iterations and
a sharp decrease in the objective function values can
be seen within a few iterations between 0 — 10, which
empirically proves the correctness of our algorithm.

Convergence Analysis on Cora, Wiki, Washington

Objective function value

00E+06
1.00E+04 \

Figure 2: Convergence Analysis of USS-NMF

Iteration number

References
[1] S. Cavallari et al. “Learning community embedding
with community detection and node embedding
on graphs”. In: Proceedings of the 2017 ACM
on Conference on Information and Knowledge

Management. 2017.

2]

3]

4]

[5]

[6]

7]

P. Goyal and E. Ferrara. “Graph embedding
techniques, applications, and performance: A
survey”. In: Knowledge-Based Systems 151 (2018).

A. Grover and J. Leskovec. “node2vec: Scalable
feature learning for networks”. In: Proceedings of
the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining. 2016.

B. Perozzi, R. Al-Rfou, and S. Skiena. “Deepwalk:
Online learning of social representations”. In:
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining.

2014.

B. Rozemberczki et al. “Gemsec: Graph embedding
with self clustering”. In: Proceedings of the 2019
IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. 2019.

C. Tu et al. “Max-margin deepwalk: Discriminative
learning of network representation.” In: [JCAL
2016.

Z. Yang, W. Cohen, and R. Salakhudinov.
“Revisiting Semi-Supervised Learning with Graph
Embeddings”. In: International Conference on
Machine Learning. 2016.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



	Background on Graph Embedding
	Implelementation Details
	Ablation Study
	Importance of Label Information
	Importance of Cluster Information

	Study on Laplacian smoothing variants
	SSL with balanced dataset:
	SSL with varying ratio of labeled data:
	USS-NMF's sensitivity to number of clusters
	Convergence Analysis for USS-NMF

