

Semi-Supervised Learning for Clusterable Graph Embeddings with NMF

Anasua Mitra¹, Priyesh Vijayan², Srinivasan Parthasarathy³, Balaraman Ravindran⁴

[anasua.mitra@iitg.ac.in, priyesh@cse.iitm.ac.in, srini@cse.ohio-state.edu, ravi@cse.iitm.ac.in] [1 - Indian Institute of Technology Guwahati] [2, 4 - Robert Bosch Centre for Data Science & Artificial Intelligence affiliated with Indian Institute of Technology Madras] [3 - Ohio State University]

Motivation & Objective :~

Encoding largely ignored **cluster assumption** of SSL to learn clusterable representations of nodes in a transductive graph based SSL framework.

<u>Contribution :~</u>

- Semi-Supervised Cluster Invariance Property for nodes
 - ~ clustering nodes with similar labels together.

<u>Components of SSL:</u> Well-separated classes, label smoothness assumption, clusterability, manifold assumption.

• <u>Cluster Assumption:~</u> If points are in the same cluster, they are likely to be of the same class.

SS-NMF Framework :~

Experiment Results & Analysis :~

Table 1: Node Classification Results | Micro-F1 Scores

	Non-negative Matrix Factorization models						Sampling	
	Proposed	SOTA	Proposed Baseline Variants			SOTA	SOTA	SOTA
Datasets	SS-NMF	MMDW	MFDWL	MF-Plan	MNMFL	MNMF	MFDW	DW
Cora	85.84	83.92	83.69	84.38	84.55	82.66	80.37	80.15
Citeseer	69.75	67.25	68.62	69.52	69.00	63.57	59.71	57.27
Wiki	67.02	66.69	66.18	66.42	<u>66.75</u>	65.75	63.94	63.01
Washington	66.09	61.13	62.61	62.83	62.96	62.61	59.13	59.13
Wisconsin	54.14	50.67	50.38	52.13	52.76	51.13	49.02	48.12
Texas	61.70	56.38	58.51	59.36	57.45	57.45	56.38	58.51
Cornell	52.04	51.22	50.94	52.04	52.04	51.45	50.00	38.78
PPI	23.09	23.58	22.19	22.16	21.45	21.23	21.75	22.22
Blogcatalog	<u>36.35</u>	34.72	34.36	34.53	34.88	34.42	32.05	40.59
Rank	1.33	3.67	5.00	3.33	3.44	5.78	7.11	6.33
Penalty	0.7267	2.3144	2.6700	<u>2.0156</u>	2.1856	3.4711	5.4622	5.9700

Table 2: Node Clustering | (O)NMI Scores

	Non-negative Matrix Factorization models						Sampling	
	Proposed	SOTA	Proposed Baseline Variants			SOTA	SOTA	SOTA
Dataset	SS-NMF	MMDW	MFDWL	MF-Plan	MNMFL	MNMF	MFDW	DW
Cora	54.40	36.44	51.38	51.80	<u>53.21</u>	39.29	34.40	34.28
Citeseer	50.94	22.61	28.94	<u>48.19</u>	41.19	29.96	17.71	19.04
Wiki	52.60	35.68	47.80	47.80	48.38	45.62	28.31	32.57
Washington	40.27	13.65	18.45	31.41	<u>33.52</u>	19.90	09.93	02.88
Wisconsin	31.52	07.79	06.81	28.38	17.89	11.20	06.09	05.04
Texas	36.30	07.63	10.61	<u>28.72</u>	15.14	09.00	02.85	02.70
Cornell	04.77	03.70	04.49	04.89	04.14	03.99	04.16	03.53
PPI	09.76	08.44	08.26	09.36	09.19	08.77	07.91	09.44
Blogcatalog	14.31	06.07	06.18	07.36	<u>08.61</u>	06.93	03.06	03.71
Rank	1.11	6.00	4.77	4.67	2.89	4.67	7.11	7.00
Penalty	0.0133	16.9977	12.4522	4.1200	7.0800	13.3700	20.0633	20.2000

Experiment Setup :~

- 5 fold cross-validation, 50% train-test split with random and stratified sampling.
- K-means & C-means clustering to detect (non)-overlapping clusters.
 Logistic Regression classifier for classification.
- Penalty[model] = Avg(Best[Dataset Performance[Model][Dataset])

Stratified Sampling Micro F1 scores in percentage	Cora	Citeseer	Pubmed
Planetoid	69.1	49.3	66.4
SS-NMF	78.8	50.6	79.6

<u>State-of-the-art Results :~</u>

Robust performance (ranks first in 8/10 datasets and ranks second in rest 2/10) across 10 datasets in comparison with 8 baselines for node classification.

Performs outstandingly well in node clustering task with improvement upto 7% over the second best model MNMFL.

t-SNE Visualization of Embeddings on Citeseer Dataset for Unsupervised & Semi-Supervised Methods

Well-separated and homophilous clusters !

<u>References :~</u>

- 1. Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." *Proceedings of 20th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2014.
- 2. Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." *Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2016.
- 3. Tu, Cunchao, et al. "Max-Margin DeepWalk: Discriminative Learning of Network Representation." IJCAI. 2016.
- 4. Wang, Xiao, et al. "Community Preserving Network Embedding." AAAI. 2017.
- 5. Yang, Zhilin, William W. Cohen, and Ruslan Salakhutdinov. "Revisiting semi-supervised learning with graph embeddings." arXiv preprint arXiv:1603.08861 (2016).