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Semi Supervised Learning (SSL)
— For learning a meaningful inference1, a data point x should carry useful information for

estimating the target function y, i.e., Pr(x) should help inferring Pr(y|x).

Figure: The influence of unlabeled data in
semi-supervised learning (Source: Wikipedia)

• Learning from both Labeled and
Unlabeled data.

• Unlabeled data is abundantly
available, unlike costly labeled data!

• Unlabeled data can give a better
sense of class separation boundary!

• Important prerequisite – certain
assumptions need to be hold.

1Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. “Semi-supervised learning (chapelle, o. et al., eds.; 2006)”. In:
IEEE Transactions on Neural Networks (2009).1



Assumptions of SSL
Smoothness/ Continuity Assumption — Enforced between a pair of points2.

Smoothness Assumption in action:

If two nodes are closely connected by a similarity 
matrix S, it is highly likely, they will have same labels Y. 
It is the basis of Label Propagation algorithm.

Smoothness
Assumption
The target function of
two closely connected
points in a dense region
should also be close.

Similar to Supervised Learning
assumptions, in addition to that,
SSL takes the density of data
points into account.

2Chapelle, Scholkopf, and Zien, “Semi-supervised learning (chapelle, o. et al., eds.; 2006)”.
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Assumptions of SSL
Cluster Assumption — A special form of Continuity, enforced among a group of points3.

Cluster Assumption in action:

If two nodes are connected by paths in dense region, it 
is highly likely, they will have same labels. Because 
examples of same class data tend to form clusters. 

If E is node-to-node label similarity and H is a cluster matrix that 
we want to learn based on label invariance,

Cluster Assumption
Points belonging to the
same cluster are likely to
be of the same class as
data from each class
follows a coherent
distribution, tends to
form clusters.

Although, data that shares a
label may spread across multiple
clusters.

3Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. “Cluster kernels for semi-supervised learning”. In: Advances in
neural information processing systems. 2003.
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Assumptions of SSL
Low Density Separation — A preference for decision boundaries in low-density regions4.

Figure: Decision boundaries of learning algorithms.
Source: Google.

Low Density
Separation
The decision boundary
should lie in a
low-density region.

Continuity Assumptions imply
this.

4Chapelle, Scholkopf, and Zien, “Semi-supervised learning (chapelle, o. et al., eds.; 2006)”.
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Assumptions of SSL
Manifold Assumption — To mitigate the Curse of Dimensionality.

Manifold Assumption
The data lie approximately on a manifold of much lower dimension
than the input space.

Facilitates learning using distances and densities defined on the manifold.

The classical graph based semi-supervised learning loss function can be written asa ,

L∑
i=1

l{Yi, f(Xi)} + λ.
∑
i,j

Ai,j{f(Xi)− f(Xj)}
2 (1)

Where, X is either original network features, or a low dimensional representation of nodes — which NRL methods facilitates by
learning an intermediate function, g : U 7→ X to project underlying graph’s large feature space U to a lower dimensional
manifold X : X � U . f : X 7→ Y — is a function that predicts a node’s labels.

aZhilin Yang, William Cohen, and Ruslan Salakhudinov. “Revisiting Semi-Supervised Learning with Graph Embeddings”. In:
International Conference on Machine Learning. 2016.
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Our Contributions
— Encoding SSL Cluster Assumption.

USS-NMF: Encoding largely ignored cluster assumption to learn
clusterable representations of nodes in a transductive graph based
SSL framework. We propose Semi-Supervised Cluster Invariance
Property for nodes, for clustering nodes with similar labels together.
We provide a framework which incorporates essential learning
principles of SSL.

The primary distinction between other graph based SSL methods and ours lies in the fact that,

• We learn a function h : X 7→ H that learns a node’s cluster structure, one abstract space. It is learned along with the
label prediction function f to predict labels Y .

• We enforce label invariance, i.e., two nodes with same labels should belong to same clusters, in terms of a train-label
similarity matrix E on the cluster space H via Laplacian regularization objective.
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Proposed Method: USS-NMF
— Encoding local invariance or network structure5. Via network-proximity matrix factorization.

Enforces Manifold Assumption via low-dimensional network representation learning.
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Figure: Encoding Network Structure

Onetwork = min
M,U
‖S− UTM‖2 : M ≥ 0,U ≥ 0 (2)

5Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social representations”. In: Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014.
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Proposed Method: USS-NMF
— Encoding supervision knowledge6. Via label matrix factorization & label propagation objectives.

Label Smoothness Assumption enforcing Low-Density Separation.
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Figure: Encoding Supervision Knowledge

Olabel = min
Q,U
‖W� (Y− QU)‖2 + Tr{(QU)δ(S)(QU)

T} : Q,U ≥ 0 (3)

6Cunchao Tu et al. “Max-margin deepwalk: Discriminative learning of network representation.”. In: IJCAI. 2016.
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Proposed Method: USS-NMF
— Encoding semi-supervised cluster structure7. Via cluster membership matrix learning & factorization.

Semi-Supervised Cluster Assumption enforcing Low-Density Separation.
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Figure: Encoding Cluster Structure

Ocluster = min
H,C,U≥0

‖H− CU‖2 + ‖HHT − I‖2 + Tr((H)δ(E)(H)
T
) (4)

7Xiao Wang et al. “Community preserving network embedding”. In: Thirty-first AAAI conference on artificial intelligence.
2017.
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Proposed Method: USS-NMF
— Encoding semi-supervised cluster structure8

Via cluster membership matrix learning & factorization.

Semi-Supervised Cluster Assumption enforcing Low-Density Separation.
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Figure: Encoding Cluster Structure

8Wang et al., “Community preserving network embedding”.10



Interesting Visualizations
Q. How competitively the algorithms perform?— Visualizations: on test data.

MFDW (Acc: 75.94%)

Original

MFDW+Y (Acc: 85.17%) MNMF (Acc: 81.99%)

MNMF+Y (Acc: 82.51%)
USS-NMF (Acc: 86.72%)

Error due to only label smoothening Error due to only unsupervised clustering

Smooths on label and has more label diversity due to 
cluster structure

Error due to conflicting joint optimization

Error due to not preserving label/ topological information
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State-Of-The-Art Results
— On node classification & clustering.

• Cluster enforcing models are the superior unsupervised models. Among them, Com-E9,
M-NMF10 showed superior performance than GEMSEC11.

• All supervised models obtain better performance over unsupervised counter-parts.
• Our model outperformed present SOTA unsupervised community enhanced NRL

algorithms M-NMF, COM-E, GEMSEC by a large margin — which shows the superiority
of semi-supervised clustering criteria over any kind of unsupervised clustering criteria.

• Experiments results for USS-NMF :
– Robust performance (ranks first in 12/13 datasets and ranks second in just 1) across all 13 datasets in

comparison with 8 baselines for node classification.
– Performs outstandingly well in node clustering task with improvement upto 7% on average over the second

best model MNMFL.
– Well-separated & homophilous clusters obtained in t-SNE visualizations.
– USS-NMF does well in both random and balanced test-train splits, even in label sparsity!, outperformed

Planetoid-G12 by a large margin in their balanced sampling based test-train splits.

9Sandro Cavallari et al. “Learning community embedding with community detection and node embedding on graphs”. In:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017.

10Wang et al., “Community preserving network embedding”.
11Benedek Rozemberczki et al. “Gemsec: Graph embedding with self clustering”. In: Proceedings of the 2019 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining. 2019.
12Yang, Cohen, and Salakhudinov, “Revisiting Semi-Supervised Learning with Graph Embeddings”.
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Interesting Visualizations
Q. To cluster or not to cluster?— Visualizations & parameter sensitivity analysis.

— USS-NMF provides well separable homophilous clusters. Learning clusters
almost always improves performance.

Figure: t-SNE Visualizations

Figure: Varying Number of Clusters13



Interesting Visualizations
Q. To cluster or not to cluster? — Ablation study.

— It is important to analyze the importance of utilizing label and cluster information, separately.
The figures below show the contribution of label information (left) and cluster information (right), as well as, contributions of their
various components. The boxplots depict statistics of performance improvement (minimum, maximum, mean values, all the
quartiles) across all the datasets owing to each component, separately & collectively — over Matrix Factorized DeepWalk.

Figure: Usefulness of label information Figure: Usefulness of cluster information
14



Useful Insights
Q. What about large hyper-parameter search space & performance in label sparsity?

— We provide you with one effective range of hyper-parameter space.
A range, which also gave decent performance in label sparsity.

Co-efficients USS-NMF (Effective range)

Dataset (small=<1k, large>1k —V—) Small Large

Network 1, 5 1, 5, 10
Label 0.1, 1 0.1, 0.5, 1
Cluster Factorization 0.1, 1 0.1, 0.5, 1
Cluster Learning 10 10
Cluster Orthogonality 1e + (0, 4) 1e + 8
Graph Laplacian Regularization 0.5, 1 0.5, 1
L2 Regularization 1 1
#Clusters #Labels #Labels
#Experiments 32 (Full search) 54 (Full search)

Table: Hyper-parameter search space for USS-NMF

Dataset Cora
Train (%) 5 10 20 30 40 50
NMF:S+Y 67.519 76.620 79.012 84.660 84.194 85.535
MMDW 67.403 75.101 80.093 82.942 82.889 83.838
MNMF+Y 68.947 76.948 81.172 84.396 83.518 85.904
USS-NMF 69.452 78.015 82.880 85.609 85.486 87.380

Table: Node Classification Results — Varying
Train-Test Splits — Micro-F1 Scores
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